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Abstract. We investigate the influence of different kinds of structures on the learning behaviour
of a perceptron performing a classification task defined by a teacher rule. The underlying pattern
distribution is permitted to have spatial correlations. The prior distribution for the teacher
coupling vectors itself is assumed to be nonuniform. Thus, classification tasks of quite different
difficulty are included. As learning algorithms we discuss Hebbian, Gibbs, and Bayesian learning
with different priors, using methods from statistics and the replica formalism. We find that the
Hebb rule is quite sensitive to the structure of the actual learning problem, failing asymptotically
in most cases. In contrast, the behaviour of the more sophisticated methods of Gibbs and Bayes
learning is influenced by the spatial correlations only in an intermediate regime ofα, whereα
specifies the size of the training set. In view of the Bayesian case, we show how enhanced prior
knowledge improves the performance.

1. Introduction

In the statistical physics of neural networks one of the most important paradigms is the
learning of a rule from examples[1, 2]. The simplest case is where: (i) the rule can be
represented by a ‘teacher perceptron’, while (ii) at the same time the neural network, which
tries to learn the rule, is also given by a perceptron, called the ‘student’. However, although
much is known on this generalization problem, at least for single-layer perceptrons, see
e.g. [1, 2] and references therein, two simplifying assumptions are usually made, namely
that (a) the ‘rule’ itself, and (b) the examples, are both completely random, i.e. (a) without
correlations between the componentsBi , i = 1, . . . , N , of the teacher perceptron’s coupling
vectorB connecting theN input units i to the output unit, and (b) without correlations
between the componentsξµi with different i and/orµ, respectively, of the inputsξµ.

In practical cases there exist of course such correlations, i.e. bothspatial correlations
(e.g. in the ‘rule’B, i.e. between different componentsBi of the teacher perceptron,
and/or in the componentsξi of the vectorsξ representing the inputs to be classified by the
system) and alsosemanticcorrelations (e.g. two different inputsξµ andξν may represent
different ‘handwritings’ of the same word). Here we only mention that storage problems
with semantic correlations have been treated in [3, 4] and concentrate in the following on
spatial correlations, by assuming that all patternsξµ are drawn independently from the
same non-trivial probability distribution, see below. In context with the simpler ‘storage
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capacity problem’, spatial correlations have already been treated in [3–5], but the ‘correlated
generalizationproblem’ itself, which is the focus of our paper, has not yet been studied,
as far as the authors know, except in a paper of Tarkowski and Lewenstein [6], where only
the special case of Gibbs learning with uncorrelated teacher couplings was discussed.

In all these papers on correlated patterns, [3–6], onlysingle-layer perceptronshave been
considered, whereas foruncorrelated patternsthe generalization problem has also been
extensively treated formultilayer perceptrons. Although many interesting results, which
may also be of practical relevance, have been obtained for these more realistic multilayer
networks, see e.g. [7, 8], this was for uncorrelated systems and uncorrelated tasks only.
Moreover, it has turned out in these and similar studies that multilayer networks cannot
be treated successfully without a proper understanding of the behaviour of thesingle-layer
sub-perceptrons, which are the building blocks of the multilayer systems. Therefore we
concentrate here on those ‘prerequisite single-layer perceptrons’, treating the influence of
spatial correlations on the generalization ability of these simplest neural networks. As we
will see, this influence can be useful or detrimental, depending on the task and on the
system. If possible, we mention explicitly in the text, or at the end in the discussion, which
of our results can be transferred to multilayer systems and can perhaps be used in some
kind of ‘strategy’. Nevertheless one should stress here that the single-layer perceptron itself
has recently become a quite popular and successful classifier in so-calledsupport vector
machines[9] and is more than just a toy model—thus far the motivation of the following.

In this paper we consider exclusively the case of so-calledbatch learning, i.e. the
‘student system’ is always trained with all examples, which are kept in mind without any
preference, and is forced to classify not only the last training example, butall members
of the training set correctly, whereas with the so-called ‘online learning’ (see e.g. [10]) at
every training step anew pattern is presented to the student and the student only uses this
newly added example in the training. Extending our work to multilayer perceptrons for
‘batch learning’ would be in fact rather expansible whereas it is much easier for the case
of online learning. These questions are under investigation.

In the following, by analytical methods we study therefore the generalization problem
‘with spatial structure’ as specified below; a ‘student perceptron’ is considered, trying to
learn by batch-algorithms a rule given by a ‘spatially structured teacher perceptron’. The
set of training examples itself is also spatially structured, and we study, how the student
takes over the spatial correlations inherent in the training examples and in the teacher
perceptron, and how the generalization ability depends on these parameters as a function
of the sizeα of the training set. The main problem is of course, how the spatial structure
can be used most effectively, implicitly or explicitly, by the learning process considered.
As learning algorithms we study Hebbian learning, Gibbs learning, and Bayesian learning,
using statistical methods and the replica formalism. Although the spatial structure of the
patterns and of the teacher machine does not matter asymptotically forα→∞ in the two
last-mentioned cases (see below), we find that the correlations, as well as enhanced prior
information in the Bayesian case, can be quite useful atintermediatevalues ofα.

In view of the spatial structure considered below, we concentrate on the basic case of
segmentation—or more generalquasisegmentation, see below—of the system into a finite,
or infinite, number of segments, which have a finite mutual correlation between the activity
of the neurons belonging to the same (resp. different) segments, and similarly partitioned
correlations (but with different strengths) of the synaptic couplings joining these neurons.
Real data have such correlations, and it is usually part of preprocessing the data to detect such
global dependencies, for example byprincipal-component analysis(PCA) see e.g. [11, ch 8],
or [12]. Although in the simplest case we consider spatial correlations corresponding to just
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two segments of equal size, is a restriction, the basic properties can actually be investigated
quite clearly. On the other hand it is rather natural to assume similar correlations in the
classifying ‘teacher rule’ as well as in the patterns; this reflects the fact that similarities in
the properties of typical patterns correspond to a similar impact on the classification labels
of the patterns. This is again a property encountered in practice. More details are given
below.

2. Basic definitions

We consider as usual a system with binary input patternsξµ = (ξµ1 , . . . , ξµN), where theξµi
are±1. These input patterns generate at the teacher and student perceptrons, respectively,
the so-called post-synaptic fields

hB := 1√
N

N∑
i=1

Biξi = 1√
N
B · ξ (1)

and

hJ := 1√
N

N∑
i=1

Jiξi = 1√
N
J · ξ. (2)

The corresponding outputs areσB := signhB , which is the ‘correct output’, given by the
teacher, andσJ := signhJ . The stability of the student’s output—if it is correct—is given
by the positive quantityκ := σBJ · ξ/(|J |

√
N).

As usual, thegeneralization abilityg(α) is defined as the probability that the student,
after training, produces the same output as the teacher on a newly added random input,
which does not belong to the training set. Here the ‘newly added random input’ is
specified as follows. It should be different from the training inputs, but drawn from
the same probability distribution, i.e. with the same spatial correlations (see below). The
correspondingerror probability is ε := 1− g(α). If there are no correlations,ε is given
as usual by the overlapr := (J · B)/(|J | · |B|) of the coupling vectors of the two
perceptrons, byg(α) = 1− (1/π) arccos(r), see e.g. [1, 2]. With correlations, however,
the following non-trivial pattern- and (teacher-)phase-space correlation matrices come into
play for i, j = 1, . . . , N :

CPij ≡ CPji := 〈ξiξj 〉ξ and CTij ≡ CTji := 〈BiBj 〉B . (3)

(For i = j these correlations are of course trivial, i.e.CPii = 1, CTii = B2/N (also= 1
without restriction).) The brackets〈. . .〉ξ resp.〈. . .〉B imply ensemble averages with the
corresponding binomial (resp. Gaussian) probability densities, e.g.

P(B) = [(2π)NDetCT ]−1/2 exp

[
− 1

2

N∑
i,j=1

Bi(C
T
ij )
−1Bj

]
. (4)

In the following we skip the sub-indexesξ andB for simplicity, since we additionally
assume that the system isself-averaging; i.e. for almost all configurations of the patterns
ξ and of the teacher perceptronB considered, the same correlation matricesCP and CT ,
and also the expressions defined below, can not only be obtained by the ensemble averages
〈. . .〉ξ (resp.〈. . .〉B), but also forfixed realization by averaging over equivalent pairs of sites
(i, j) in the limit of infinitely large systems,N → ∞, see below. Moreover, as already
mentioned, we exclude semantic correlations by requiring that for different patternsξµ and
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ξν one always has〈ξµi ξ νj 〉 = 0 for i, j = 1, . . . , N . With these definitions one obtains
additionally the important parameters

T := 〈(hB)2〉 = N−1
N∑

i,j=1

〈BiBjξiξj 〉 = N−1
N∑

i,j=1

CTijC
P
ij (5)

S := 〈(hJ )2〉 = N−1
N∑

i,j=1

〈JiJj ξiξj 〉 = N−1
N∑

i,j=1

CPij 〈JiJj 〉 (6)

and

R := 〈hJ · hB〉 = N−1
N∑

i,j=1

CPij 〈JiBj 〉. (7)

Here T is fixed by the ‘teacher rule’ and the spatial pattern correlations, whileS andR
change in course of the learning process.

As already mentioned, our paper is motivated by the natural assumption that the spatial
pattern correlations, and the phase-space correlations as well, i.e. spatial correlations in
the couplings, correspond structurally to asegmented systemin a similar way as words
are segmented into letters, but recognized as a whole, [13]. Such a segmentation arises
implicitly or explicitly in many application tasks. It is also natural to assume that pattern- and
phase-space correlations aresegmented in the same way, which means that the correlation
matrices havethe same eigenvectorsεk = (εk1, . . . , εkN), with k = 1, . . . , N , although the
corresponding eigenvaluesCPk andCTk may be drastically different [14, 6]. In fact, only
this agreement of the eigenvectors is what we postulate in the following, when talking of
‘ the general quasisegmented case’. Moreover, we often specialize below to ‘the simplest
segmented case’ by making the natural assumption of only two segments of the same size:

ξ := (ξ0, ξ1) = (ξ0
1 , . . . , ξ

0
N/2, ξ

1
1 , . . . , ξ

1
N/2) (8)

with

〈ξ0
i ξ

1
j 〉 = δi,j cp 〈ξ0

i ξ
0
j 〉 = 〈ξ1

i ξ
1
j 〉 = δi,j (9)

and analogouslyB := (B0,B1) = (B0
1, . . . , B

0
N/2, B

1
1, . . . , B

1
N/2) with

〈B0
i B

1
j 〉 = δi,j ct 〈B0

i B
0
j 〉 = 〈B1

i B
1
j 〉 = δi,j (10)

for i, j = 1, . . . , N/2. The correlation parameterscp and ct have to be smaller than 1 in
magnitude, otherwise they can be arbitrary real numbers. During the training process, also
the studentperceptron develops a similar segmentation with a correlation parametercs .

In the ‘general quasisegmented case’, the generalization abilityg(α) is obtained
from the three parametersT , S and R defined in equations (5)–(7), byg =
2
∫∞

0 dhJ
∫∞

0 dhB P (hJ , hB), with P(hJ , hB) = (2π
√
ST − R2)−1 exp[−(Sh2

B + T h2
J −

2RhBhJ )/(2(ST − R2))]. The result is

g = 1− 1

π
arccos

(
R√
S · T

)
. (11)

For the ‘simplest segmented case’ defined through equations (8)–(10), this general result is
specialized, by evaluation ofS, T andR, to

g = 1− 1

π
arccos

(
r + cpcd√

(1+ cpcs)(1+ cpct )

)
(12)
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where

cd = 1

2

〈
B0 · J1

|B0| · |J1| +
B1 · J0

|B1| · |J0|
〉

(13)

is the cross correlation between thedifferentsegments of the student’s and teacher’s coupling
vectors.

3. Hebbian learning

First, we briefly consider Hebbian learning, although this learning prescription generally
fails for α → ∞ in the presence of correlations, which is not astonishing (see e.g. [15])
and strongly contrasts to Gibbs and Bayes learning (see below). However, as we will see,
even in the presence of correlations the results for Hebbian learning are interesting, if the
numberp := αN of training examples is small compared withN , i.e. for α � 1.

Hebbian learning is defined by theone-shot prescription

Ji = N−1/2
p∑
µ=1

sign

(
B · ξµ√
N

)
ξ
µ

i (14)

which leads for the ‘general quasisegmented case’ to

S = α

N

N∑
k=1

[
(CPk )

2+ 2α

πT
CTk (C

P
k )

3

]
(15)

and

R = α

N

(
2

πT

)1/2 N∑
k=1

CTk (C
P
k )

2 (16)

whereasT is fixed. HereCTk andCPk are the eigenvalues of the correlation matrices of
equation (3). From these general results one can evaluate the generalization ability simply
via equation (11). For the ‘simplest segmented case’ defined by equations (8)–(10) one
obtainsg(α) from equation (12); the final result for the error-probabilityε = 1− g is then

ε(α) = 1

π
arccos

 α(1+ 2cpct + c2
p)√

α π2 (1+ cpct )2(1+ c2
p)+ α2(1+ cpct )(1+ 3cpct + 3c2

p + c3
pct )

 .
(17)

From this result for the ‘simplest segmented case’ the following general conclusions can be
drawn.
• For small α, Hebbian learning is quite effective. The generalization errorε(α)

decreases rapidly with increasingα asε(α) = 1
2 −O(

√
α).

• Moreover, from figure 1 one can see that the decrease of the generalization error is
faster, if the correlations are ‘useful’ (i.e. forctcp > 0); whether this is the case or not,
does of course not depend on the student, but only on the given training examples. That
is, if the choice of the training examples is the teacher’s task, he (or she) should try to
give examples which arein accordancewith the spatial correlations inherent in the ‘rule’,
such thatcpct > 0. On the other hand, what the student could do is tomonitor the spatial
correlations in the examples to obtain an estimate ofcp already for rather smallα. Then by
comparison of the ‘monitored’ values ofε(α) andcp with equation (17), one can estimate
ct (i.e. an important part of the rule to be discovered, which may be useful afterwards for
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Figure 1. For Hebbian learning with a correlation parameterct = 0.7 of the two segments of
the teacher perceptron, the generalization errorε(α) is presented as a function of the reduced
sizeα := p/N of the training set for different values of the pattern correlation parametercp .

Bayesian learning, see sections 5.2 and 5.3 below, where different priors are considered).
Of course, for the ‘general quasisegmented case’ this may be illusionary.
• However, in the limitα → ∞, the error of the Hebbian learning prescription does

not converge to zero, but to

ε∞ := lim
α→∞ ε(α) =

1

π
arccos

 1+ 2cpct + c2
p√

(1+ cpct )(1+ 3cpct + 3c2
p + c3

pct )

 . (18)

This residual generalization errorfor Hebbian learning is due to the fact that the correct
value for the student structure,cs = ct , is usually not achieved forα→∞, althoughε(α),
as obtained with the Hebb rule, decreases monotoneously with increasingα. Already at this
point, we remark that, in contrast, for the Gibbs and Bayes algorithmsε(α) always vanishes
for α → ∞, and there the asymptotics of the limiting behaviour does not depend on the
correlations at all (see below).

For the Hebbian case, the behaviour ofε∞ as a function ofcp for different values of
ct is plotted in figure 2. Obviously, with Hebbian learning, correlations in the patterns
usually lead to nonvanishing residual generalization error; moreover, as already mentioned,
an opposite signin the correlations of patterns and teacher vector, respectively, makes
the learning task more difficult. (This observation will probably again transfer to more
complicated networks.) Nevertheless, for fixedct , whatever the sign ofctcp is, and although
for sufficiently small values of|cp| the error increases∝ |cp| with increasing|cp|, there is
according to figure 2 finally adecreasedown to 0 in the residual error, if|cp| increases
beyond a certain value, which depends onct . This again is an important statement, which
means that sufficiently strong spatial correlations in the patterns will almost always be
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Figure 2. The limit of the generalization error forα → ∞ in the case of Hebbian learning
is presented as a function of the pattern correlation parametercp for different values of the
correlationct of the two segments of the teacher perceptron.

useful.
There are thus three limits where with Hebbian learning and fixedct a vanishing resisual

generalization error is achieved forα→∞, namely:
(i) for uncorrelated pattern spaces (cp = 0); the value ofct does not matter at all in

this case, as can be seen already from equation (17), since thenε(α) = π−1 arccos[1+
(π/2α)]−1/2, which vanishes forα→∞ asε = 1/

√
2πα;

(ii) for cp = ±1, with ct 6= (−cp); in this case the pattern segments are identical up
to ±1; this corresponds to an effective reduction ofN to N/2, i.e. to a doubling ofα, but
otherwise the same result as for (i);

(iii) for ct = ±1, with cp 6= (−ct ); in this case one has

ε(α) = π−1 arccos
{

1/
√

1+ π(1+ c2
p)/[2α(1± cp)2]

}
which behaves forα→∞ as

√
1+ c2

p/[
√

2πα(1± cp)].
In contrast to (ii) and (iii), ifct is not kept fixed, but if the point(cp, ct ) = (−1, 1)

or (1,−1) is approached with fixed slope∂ct/∂cp = −x, then, according to equation (18),
the residual errorε∞ is a decreasing function ofx for 0 < x < ∞, with ε∞ = 1

2 (which
corresponds to zero generalization ability) forx = 0+, via ε∞ = 1

4 for x = 1, to ε∞ = 0
for x →∞. At x ≡ 0, whereε∞ vanishes, there is thus a discontinuity.

Except (i), these are just pretty artificial cases, so the Hebb rule fails, if correlated
patterns are to be learned.

For ct = 0, we have found that even themodified Hebb prescription of [14], which
corresponds to the matrix transformationJ → K · J with K = (CP + νI)−1, where the
pattern correlation matrixCP is given by equation (3), whileI is theN ×N unit matrix and
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ν is an optimization parameter, would yield at most a∼ 30% reduction of the generalization

error ε(α), although forν =
√

1− c2
p alsocs vanishes.

4. Gibbs learning

In the case of Gibbs learning, the student perceptron is drawn at random from the so-
calledversion spaceV, which consists exactly of all perceptrons which classify the training
examples correctly. Tarkowski and Lewenstein [6], treated storage and generalization of
spatially and semantically correlated patterns in perceptrons, but only for the special case
of Gibbs learning withuncorrelatedteacher couplings (CT = I in equation (3)). We extend
their approach toCT 6= I and correct some of their results (see below), using Gardner’s
[16, 17] replica method. With the teacher fieldut := N−1/2B · ξ (= hB in equation (1))
and the different student fieldsua := N−1/2Ja · ξ, wherea = 1, 2, . . . , n enumerates the
replicas, one obtains for general quasisegmentation with equations (6) and (7) the following
order parameters:

T := 〈u2
t 〉 = N−1

N∑
k=1

CPk B̃
2
k (19)

Ra := 〈utua〉 = N−1
N∑
k=1

CPk B̃kJ̃
a
k (20)

Sa := 〈u2
a〉 = N−1

N∑
k=1

CPk (J̃
a
k )

2 (21)

Qab := 〈uaub〉 = N−1
N∑
k=1

CPk J̃
a
k J̃

b
k . (22)

Here theCPk are again the eigenvalues of the pattern correlation matrixCP , while B̃k and
J̃ ak are the components ofB (resp.Ja) in the corresponding basis; the fieldsut andua can
be generated from normally distributed, independent variablesw, vt andva by

ut =
√
T − R

2

Q
vt − R√

Q
w (23)

ua =
√
S −Qva −

√
Qw. (24)

The general result for the free energy, evaluated with the replica trick assuming replica
symmetry, which is exact in this case, isF = Extr [F1+ αF2], where theenergy termF2 is

F2 = 2
∫

DwH(x1) lnH(x2) (25)

with x1 := Rw(TQ − R2)−1/2 and x2 = w(Q/(S − Q))1/2, where Dw :=
(2π)−1/2 dw exp(−w2/2) andH(x) := ∫∞

x
Dw. The entropy termF1 is given by

F1 = ln(2π)−N−1
N∑
k=1

{
ln[E + (F +H)CPk ] + FC

P
k +G2(CPk )

2CTk

E + (F +H)CPk

}
+E

2
+GR + HS + FQ

2
. (26)

HereE, F , G andH are additional order parameters conjugate to|J |, Q, R andS, so that
in all (since|J | is fixed)F has to be optimized for seven order parameters.
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For our ‘simplest segmented systems’, see equations (8)–(10), the general results from
equations (20)–(22), see also (11)–(13), specialize to

Ra = ra + cpcad Sa = 1+ cpcas Qab = qab + cpqabd (27)

with

ra = N−1B · Ja qab = N−1Ja · Jb cas = 2N−1J0a · J1a

cad = N−1(B0 · J1a +B1 · J0a)

qabd = N−1(J0a · J1b + J1a · J0b).

(28)

In view of the free energy, with the saddle-point approach and again with the replica
symmetry assumption, theentropy termspecializes to

F1 = 1

2
{ln(2π)+ ln[(q − 1− qd + cs)(q − 1+ qd − cs)]}

− 1− q + qdcs − c2
s

(q − 1− qd + cs)(q − 1+ cd + cs)
+ (r

2+ c2
d)(q − 1+ ctqd − ctcs)+ 2r cd(ct − qct + cs − qd)
(q − 1− qd + cs)(q − 1+ qd + cs)(1− c2

t )
(29)

which depends only on the five parametersr, cs , cd , q, andqd , but not oncp, whereas the
energycontribution specializes to

F2 = 4
∫

DwH(x1w) lnH(x2w) (30)

with

x1 = r + cpcd√
(1+ cpct )(q + cpqd)− (r + cpcd)2

(31)

x2 =
√

q + cpcd
1+ cscp − (q + cpqd) . (32)

Using the conditions∂F/∂r = ∂F/∂cs = ∂F/∂cd = ∂F/∂q = ∂F/∂qd = 0 one
obtains the evolution of all interesting quantities.

A major difference to the Hebb case can be seen from the asymptotic behaviour for
α→∞. For unstructured teacher perceptron (ct = 0), the entropy term can be simplified,
since thenq = r, qd = cd andcs = 0. So one obtains asymptoticallycd → cp · (1− r) and

r → 1− 1

α2C2(1− c2
p)

(33)

with C = (2π)−1/2
∫

dx H(x) lnH(x) ≈ −0.360 324.
Thus, with Gibbs learning in the casect = 0 a perfect overlap, and thus perfect

generalization, is reached for all values ofcp, in contrast to Hebbian learning, where this
was only the case whencp = 0 (except some limiting cases, see above). However, the
prefactor of the 1/α2-behaviour of equation (33) is proportional to(1− c2

p), which means
that asymptotically for the overlapr, but not for the generalization ability itself (see below),
spatial pattern correlations are still slightly detrimental for the Gibbs case withct = 0, but
only for the just-mentioned prefactor, whereas the ‘residual error’ itself now vanishes, in
contrast to the Hebb case.

Let us now concentrate on the generalization error. In figure 3 this quantity is plotted
for several values of|cp| (ct = 0 fixed), showing that the error becomes smaller with
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Figure 3. For the case of Gibbs learning, the generalization errorε(α) is presented as a function
of the reduced sizeα := p/N of the training set, forct = 0 and different values of|cp|.

increasing|cp| for all α. In other words, the more structured the pattern space, the easier
it is to actually learn the classification task given by the teacher rule. This is in contrast
to the behaviour ofr (see above) but intuitively reasonable, and can be understood slightly
more thoroughly by the following consideration.

If we perform a coordinate transformation in the pattern and phase space to diagonalize
the correlation matrix (of the patterns) we have two eigenvalues 1± cp determining the
variance of the corresponding sites. This means that the sites with 1−|cp| are less significant
than those with 1+ |cp|. Thus, the student can concentrate on theN/2 latter ones to learn
the task. Since these are only half as many as the whole set, learning can be performed
faster. In the extreme case of|cp| = 1 the dimension of the system is effectively reduced
to N/2, leading to a rescaling ofα with the factor of 2. It is clear that this reasoning can
be transferred to more general segmentations and more complex architectures.

The above considerations provide an alternative view on the learning problem
investigated here as well, i.e. pattern sets which can be decomposed into components of
different magnitude. Data preprocessing using principal component analysis techniques uses
such structures in practical applications [11, 12]. Thus, correlations should be helpful in
general.

Nevertheless, looking at the asymptotic behaviour forα → ∞ of the generalization
error, which for Gibbs learning withct = 0 is

lim
α→∞ ε(α) =

1

π
arccos(r + cpcd) = 1

π
arccos

(
1− 1

α2C2

)
≈ 0.625

α
(34)

we have a result which is independent of the pattern correlations at all. So, for largeα,
structure in the patterns has no advantage in terms of the generalization error. Actually, the
fact that the improved generalization ability due to structure in the pattern space is confined
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Figure 4. For the case of Gibbs learning andα = 2, the generalization errorε(cp) is presented
as a function of the pattern correlation parametercp for different values ofct .

to an intermediateα-regime can easily be understood. To reach perfect generalization,
the sites with eigenvalue 1− |cp|, which are less significant at first, become important for
α→∞ to achieve the ultimate ‘fine adjustment’.

In the case of a correlated teacher vector (ct 6= 0) things change slightly. Figure 4
shows the dependence of the generalization error oncp for several values ofct and fixed
α = 2 (which is something like an intermediate value). We see that structure in the patterns
can actually worsen the generalization ability, if the structure is in the opposite direction to
the teacher correlation, i.e. forcpct < 0. This resembles the behaviour of the Hebb rule,
where such a type of learning problems are also difficult, and again the result can probably
be transferred to more general situations.

Looking at the simultaneously diagonalized correlation matrices the reason for this
becomes clear. Sites with the smaller variance 1− |cp|, concerning the patterns, are related
to teacher sites with the larger eigenvalue 1+ |ct |, and therefore their loss in significance
(due to a small value 1−|cp|) is somehow compensated by the larger weights of the teacher
vector.

Although not analytically shown, we expect from numerical evidence perfect
generalization in the limitα → ∞ to be achieved forct 6= 0 as well, again with the law
given in (34). This means that correlations in the systemasymptoticallyneither improve
nor worsen the generalization behaviour if one uses good enough learning rules.

Let us now break down the behaviour into the contributions from the several order
parameters. Figures 5(a) and (b) show the evolution ofr(α) for different values ofcp with
ct = 0 andct = 0.9, respectively. Forct = 0 a higher correlation|cp| leads to a smaller
overlap. Forct = 0.9 the behaviour depends on the sign ofcp as well. For smallα the
overlapr(α) is larger forcpct > 0 than forcpct < 0; but for larger values ofα the relation
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Figure 5. (a), (b) For Gibbs learning withct = 0 andct = 0.9, respectively, the normalized
overlapr(α) of the coupling vectors of the teacher’s and student’s perceptron is presented as a
function of the reduced sizeα := p/N of the training set.

is opposite. To understand this ‘crossing behaviour’ we have to notice that the magnitude
of the local fields, and so of the stability of the patterns, is enhanced (reduced) forcpct > 0
(cpct < 0).
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Figure 6. For Gibbs learning withct = 0.9, the order parametersq(α), which is the typical
overlap between the coupling vectors of two different student perceptrons, andr(α), which is
the overlap between the coupling vectors of a typical student and the teacher, are presented as
a function of the reduced sizeα := p/N of the training set for the two cases ofcp = ±0.9.

• For α � 1, a small stability (small on average) merely leads to a small bias of the
version space away from the true teacher vector (since the training patterns lie near the
classification boundary). The direction of this small bias is naturally such that thecpct > 0
case yields higher overlap.
• For α � 1 the biasing effect of the small stability disappears, since the patterns cover

the space somehow dense. On the other hand, forcpct > 0 the phase space of the solutions
is now more confined (q is smaller) because of the constraint of a higher stability (see the
evolution ofq(α) in figure 6) of the possible solutions. This leads to a smaller overlapr

for cpct < 0 in case ofα � 1.
Figure 7 shows the evolution of the student structurecs(α) for a teacher correlation

ct = 0.9. It is interesting to see that opposite correlations in the patterns (compared with
the teacher) forces the student to adopt the teacher structure rather rapidly with a similar
explanation as given above for the evolution ofr(α).

The evolution ofcd(α) with cp (figure 8 for the casect = 0) is nonmonotonic, which
generally occurs if|cp| > |ct |. Asymptotically of course, the valuecd = ct is approached.
So a high correlation in the patterns (e.g.cp>̃0.7) induce strong correlations ofcd(α) in
an intermediate region aroundα ∼ 1, which improve (worsen) the generalization ability in
this regime forcpct > 0 (cpct < 0).

Finally we should mention that theindependenceof ε(α → ∞) on the pattern
correlationscp, which we have shown analytically in equation (34) forct = 0, corrects
a different result of Tarkowski and Lewenstein [6]. Forct 6= 0 andcp 6= 0, because of
the large number of order parameters, we did not yet succeed in calculating the limiting
behaviour analytically, although it is probably unchanged. Again, in view of the results of
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Figure 7. For Gibbs learning, the evolution of the correlation parametercs(α) between the two
segments of the student perceptron, as it develops as a function of the reduced sizeα := p/N
of the training set, is presented overα for ct = 0.9 andcp = 0, ±0.7 and±0.9.

[7, 8], the result should also apply to the more complicated multilayer architectures treated
in these papers, and should also be valid in the presence of certain classes of noise.

In the following section we treat Bayesian learning with different priors, while the results
for AdaTron learning, which leads to maximal stability but not to optimal generalization,
will be discussed in a separate paper.

5. Bayesian learning

Bayesian methods are succesfully used for learning in neural networks, see [18, 19, 12].
In this approach a pattern is classified with the purpose to minimize the probability of
a ‘wrong answer’. The framework requires the specification of a prior belief about the
possible networks and a noise model defining their answer behaviour.

More precisely, thenoise modelp(s|J , ξ) defines the conditional probability of getting
the answers (correct or not) on a given patternξ for a general classifying automatonJ
ranging over some sample space. The probabilityp(D|J) of the dataD comprising the
whole training set is typically given by simplymultiplying all probabilities for the single
members of the training set, i.e. pairs of training-questions with ‘correct answers’, thus
assuming that these pairs are given independently of each other, i.e. without semantical
correlations, whereasspatial correlations may be included.

The so-calledprior p(J) defines the probability that the vectorJ describes the
automaton, before the evidence of any data is taken into account, i.e. on the basis of
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Figure 8. For Gibbs learning, the evolution of the cross-correlation parametercd of two different
segments of the teacher’s and student’s perceptron, see equation (13), as it develops as a function
of the reduced sizeα := p/N of the training set, is presented overα for ct = 0.9 andcp = 0.2,
0.7 and 0.9.

some prior knowledge. Using the Bayes theorem we obtain

P(J |D) = p(J)p(D|J)
P(D) (35)

as thea postiori probabilityof J after absorbing the evidence of the training data. Here the
so-calledevidence of the modelP(D) :=∑J p(J) p(D|J) serves for normalization. The
‘most probable correct answer’s ′ on atest-questionξ′ is then given by the weighted majority
vote due toP(J |D) from (35). Here again we assume that the same spatial correlations
CPij , see equation (3), apply to both the training-questions and to the test-questions, while in
both cases the ‘correct answers’ are given by the same ‘teacher automaton’B, which is not
specified explicitly in equation (35) and principally can have an architecture different from
that of the ‘student automaton’J (although in our case we assume the same architecture).
Of course, we also assume that the ‘student’ uses the same ‘noise model’ for both training
and afterwards.

In practice, a good choice of the noise model and the prior (which include the choice
of the architecture used) is a crucial point for getting good generalization behaviour. One
possibility for proper model selection is to calculate the ‘evidence’ of several possible
models [18, 19].

Methods from statistical mechanics can be used to investigate systems in the
thermodynamic limit, see [20], and concerning model selection [21]. The purpose of this
section is to compare the behaviour of Bayesian learning to Gibbs learning in the case of
structured spaces on the one hand, and to investigate the influence of different priors on the
other. As priors we use:

(1) a uniform prior over all normalized student coupling vectors;
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(2) a restricted prior permitting only those student weight vectors, which have the
correct (and in this case assumed as known) correlationcs = ct . (If a sufficient number of
training examples is given, the ‘student’ can get knowledge ofct by monitoring the spatial
statisticscp of the questions posed by the teacher and applying Hebbian learning for some
time, i.e. for finiteα, see above.)

Since we are considering here a deterministic classification, the appropriate ‘noise
model’ gives probability 1 for the correct answer (due to the coupling vectorJ and the
perceptron mapping rule) and 0 otherwise.

One should stress that these choices contain a rather large amount of prior knowledge
about the possible teacher rules which is not in the same way available in practical problems.

5.1. Relation to the Gibbs case

In this case it is rather easy to derive the Bayes properties from the already calculated
quantities for the Gibbs case. This is possible since one can construct aperceptronfrom
the Gibbsian version spaceV which performs like the Bayesian classification, namely the
central-point (CP) perceptron. If the M membersJl of the version space carry identicala
priori probabilities, the CP-perceptron is simply

JCP= lim
M→∞

1

K

M∑
l=1

Jl . (36)

HereK is chosen, such that|JCP| = N1/2. Therefore

K2 = lim
M→∞

1

N

M∑
l,m=1

Jl · Jm = lim
M→∞

[M +M(M − 1) · q]. (37)

So one gets for the overlap

rCP= J
CP ·B
N

= lim
M→∞

1

NM
√
q

M∑
l=1

Jl ·B. (38)

Since r := limM→∞(NM)−1∑Jl · B is the overlap for the case of Gibbs learning, we
have in this way the simple relations

rCP= r√
q

cCP
d =

cd√
q
. (39)

Additionally, one needs the correlation between the two different segments of the CP student
perceptrons:

cCP
s =

2

N
(JCP)0 · (JCP)1 = lim

M→∞
2

NM2q

M∑
l,m=1

J0
l · J1

m

= Mcs +M(M − 1)qd
M2q

→ qd

q
. (40)

The fact that the CP perceptron reaches the same generalization ability as the Bayes
classification follows from

σCP= sign

(
1

M
√
qN

M∑
l=1

Jl · ξ
)
= sign(〈hJ 〉) (41)
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and

σBayes= sign

[ M∑
l=1

sign

(
Jl · ξ√
N

)]
= sign(〈sign(hJ )〉). (42)

In [1, 22, 20] it was proved for the case of vanishing pattern—and teacher—correlations
(cp = ct = 0) that the generalization abilities obtained with the CP perceptron, equation (41),
and the corresponding Bayes algorithm, equation (42), respectively, agree for almost allξ
in the limit M →∞, where additionallyM � N is assumed. Probably the agreement of
the generalization abilities is also true, if pattern- and teacher-correlations are included.

We mention hear that fortwo-layer perceptrons, in contrast to this case, the CP
automaton doesnot reach the generalization ability of the Bayes process, except for the
parity machine. The reason for this exception is due to the ‘chequered’ structure of the
mapping in the second layer of the parity machine (each flip of the output of only one
hidden node changes the final classification from (+1) to (−1) andvice versa). This leads
to the fact that for the parity machine exploring the phase-spacearound the CP solution
by the Bayesian method gives just the same result as the CP solution itself. The interested
reader will find more details in [7].

In the following we call the CP solution ‘CP1-perceptron’ if the uniform prior (1) is
used, ‘CP2-perceptron’ if only students with structurecs = ct are permitted, prior (2).

5.2. Uniform prior

The learning curvesε(α) for this prior are shown in figure 9 for severalcp andct = 0. For
comparison the performance of the Gibbs algorithm is shown as well (cp = 0, Gibbs).

The improvement compared with Gibbs learning is significant and remains
asymptotically, i.e. one obtains forct = 0 (and probably also forct 6= 0) a behaviour
again independent fromcp, namely [20]:

lim
α→∞ ε

Bayes(α) ≈ 0.44

α
. (43)

The influence of pattern correlations is similar to the Gibbs case.
Figures 10(a) and (b) present results for the overlapr(α) between teacher- and CP1-

perceptron forct = 0 andct = 0.9 as a function ofcp. Here, one finds a similar behaviour
to the preceding section, but now somewhat more pronounced, namely: (i) forct = 0
the overlap decreases with increasingcp; (ii) for ct 6= 0 there is acrossing of the results
nearα ∼ 2, and (iii) different signs ofcp and ct lead to higher values ofr for large α;
probably this behaviour generalizes again to multilayer networks, see [7, 8]. Figure 11
deals with the internal structure of the CP1-perceptron, i.e. the internal overlapcs(α) of
its two segments is presented, again forct = 0.9, for various values ofcp. For α → ∞,
cs(α) converges to the internal structure of the teacher perceptron, i.e.cs(α) → ct . The
most prominent difference to the case of Gibbs learning is that here in the opposite limit
α → 0 the CP1-perceptron takes the value of the spatial correlation of thepatterns, i.e.
cs(α→ 0)→ cp. This has already been observed with the Hebb rule, see above, and also
with maximal-stability learning [14], in connection with the simplerstorage problem.

5.3. Restricted prior

Now let us look at the result if an enhanced prior knowledge is given, i.e. the internal
structurect of the teacher. The Bayesian inference based on this prior has the best possible
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Figure 9. For Bayesian learning withuniform prior, i.e. the CP1 perceptron, andct = 0, the
generalization errorε(α) is presented over the reduced sizeα := p/N of the training set, for
cp = 0, 0.7 and 0.9, and for comparison also for Gibbs learning withcp = 0.

generalization performance since all available prior knowledge is used to minimize the error
probability.

In the averaging process defined by equation (36) only those membersJl of the version
space are now taken into account, which fulfil the constraintcs = ct , i.e. which have the
same correlation between the segments as the teacher. In this case the teacher is a typical
member of the restricted version space, so we haveq = r andqd = cd . Thus, the expression
for the free energy simplifies for the CP2-perceptron with equations (29) and (30) to

F = Extrr,cd

{
1

2
[ln(2π)+ ln((r − 1+ ct − cd)(r − 1− ct + cd))]

+1+ ctcd − r
c2
t − 1

+ 4α
∫

DwH(x) lnH(x)

}
(44)

with x = (r + cpcd)1/2(1+ cpct − r − cpcd)−1/2. Extremizing with respect tor and cd ,
one obtains the quantities describingV in this case, and from them the behaviour of the
CP2-perceptron.

To check the performance we choose a high teacher correlation,ct = 0.9. (Clearly, for
smallerct the expected advantage should decrease, since the actual restriction of the prior
by imposingcs = ct is reduced.) The results in figure 12 show the performance of the
CP1 and CP2 perceptron as a function ofα for ct = 0.9. For intermediate values ofα, we
observe in fact a quite big improvement of the CP2 results with respect to the CP1 case.

However, it can be shown [23] that again asymptotically forα→∞ the results are the
same as for the uniform prior (1). This is a well known effect in Bayesian learning: for
large sizes of the training set the evidence of the examples dominates the influence of the
prior, which becomes increasingly irrelevant (as long as—in our case—the correct teacher
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Figure 10. (a), (b) For Bayesian learning withuniform prior, i.e. the CP1 perceptron, for the
two casesct = 0 andct = 0.9, the overlapr(α) between the coupling vector of the teacher
and the CP1 student perceptron is presented as a function of the reduced sizeα := p/N of the
training set, for pattern correlationscp = 0, ±0.7 and±0.9.

rule is included with finite probability).
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Figure 11. For Bayesian learning withuniform prior, i.e. the CP1 perceptron, forct = 0.9,
the evolution of the correlationcs(α) between the two different segments of the CP1 student
perceptron is presented, as it evolves as a function of the reduced sizeα := p/N of the training
set, for pattern correlationscp = 0, 0.2, 0.7 and 0.9.

6. Conclusions

We have studied the generalization properties of student perceptrons, which try to learn
a ‘classification rule with spatial correlations’, implemented by a teacher perceptron with
built-in spatial correlations between the components of the coupling vector. ‘Batch learning’
is used, and the patterns are drawn from a spatially nonuniform distribution as well,
allowing correlations between different sites, which can be different, however, from the
above-mentioned spatial correlations of the teacher. We concentrated on the natural case
of ‘segmented perceptrons’ and ‘segmented patterns’, where the correlations were those
of corresponding sites in different segments, and where the different correlation matrices
involved in our formalism had at least the same eigenvectors (‘quasisegmented systems’).

Using the replica method [16, 2] with a replica-symmetric ansatz, which is exact in
this case, we obtained the behaviour of Gibbs and Bayesian learning in the thermodynamic
limit. As a third learning algorithm we investigated the Hebb rule, and found that in the
presence of correlations it is useful only for low loading and exceptional limiting cases of
vanishing or extreme correlation. Otherwise there remains a residual error forα → ∞.
However, due to its simplicity, the Hebb rule allows the easiest determination of the site-
correlation measurect of the ‘teacher rule’ by monitoring the pattern correlationcp and the
generalization error for finiteα and comparing with equation (17).

In contrast, for the Gibbs and Bayes cases we find that the structure of the patterns and of
the teacher machines does not matter asymptotically forα→∞, and perfect generalization
is achieved. Nevertheless, in an intermediateα-regime the performance is quite sensitive
to correlations which can improve or worsen the generalization ability.
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Figure 12. For Bayesian learning withrestricted prior, i.e. the CP2 perceptron, forct = 0.9,
the generalization errorε(α) is presented as a function of the reduced sizeα := p/N of the
training set, for pattern correlationscp = 0, 0.7, 0.9, and also, for comparison, with unrestricted
prior (i.e. the CP1 perceptron) andcp = 0.

(We only mention at this place that we have verified some results by numerical
implementation of the learning algorithms, which is difficult for Gibbs and Bayes processes.
We simply used small systems, where the phase space was sampled by Monte Carlo methods;
a more effective way allowing for larger systems is suggested in a recent preprint of Berg
and Engel [24].)

Difficult learning cases are those withopposite correlationsin the patterns and the
teacher vector, respectively. For the Hebb rule the residual error is high, for the other
learning rules the generalization error is high for intermediateα.

These effects can be understood better by viewing the scenario as a learning problem
with different magnitudes for different components of patterns and teacher vectors. This
consideration relates things to methods like principal component analysis. Here an
interesting and practical extension would be to investigate the influence of noise, whose
disturbing influence should depend on the relation between its size and the corresponding
magnitudes of pattern and teacher-vector sites (see [8] for multilayer networks with noise,
but still for uncorrelated patterns).

For the Bayesian case we investigated the influence of different priors, showing that
improved prior knowledge (e.g. based on a knowledge of the just mentioned quantityct )
enhances the performance, but again only for an intermediate regime ofα. This corresponds
to the well known fact that prior information loses significance for large training sets.

The case of maximum-stability learning, where the AdaTron algorithm of Anlauf and
Biehl provides a fast and effective learning algorithm [25] and a related cavity method, will
be the themes of a following paper.
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